Кривошипно-шатунный механизм (КШМ): назначение, устройство, принцип работы

Вопросы разобранные в статье

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Краткая история возникновения

Первые свидетельства о применении кривошипа найдены ещё в III веке нашей эры, в Римской Империи и Византии в VI веке нашей эры. Ярким примером является пилорама из Иераполиса, на которой был применен коленчатый вал. Металлический кривошип был найден в римском городе Августа-Раурика на территории современной Швейцарии. Как бы то ни было, запатентовал изобретение некий Джеймс Пакард в 1780 году, хотя свидетельства его изобретения были найдены еще в древности.

Задние конечности кузнечиков представляют собой кривошипно-шатунный механизм с неполным оборотом.
Бедро и голень человека и роботов-андроидов тоже представляют собой кривошипно-шатунный механизм с неполным оборотом.

В Римской империи

Самые ранние свидетельства появления на машине рукоятки в сочетании с шатуном относятся к пилораме из Иераполиса, 3-й век нашей эры, римский период, а также византийским каменным пилорамам в Герасе, Сирии и Эфесе, Малая Азия (6-й век нашей эры). Ещё одна такая пилорама возможно существовала во 2 веке н. э. в римском городе Августа-Раурика (современная Швейцария), где был найден металлический кривошип.

Устройство КШМ

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.

Схема устройство КШМУстройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)

» data-image-description=»» data-image-title=»Устройство КШМ» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,620″ data-orig-file=»https://i1.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/Устройство-КШМ.jpg?fit=800%2C620&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-kshm» data-attachment-id=»9719″>
Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)

» data-image-description=»» data-image-title=»Устройство КШМ» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,620″ data-orig-file=»https://i1.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/Устройство-КШМ.jpg?fit=800%2C620&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-kshm» data-attachment-id=»9719″>
Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)

  1. Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
  2. Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
  3. Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
  4. Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

  1. Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива. поршень кшмУстройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

    » data-image-description=»» data-image-title=»устройство поршня КШМ» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,831″ data-orig-file=»https://i0.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/устройство-поршня-КШМ.jpg?fit=800%2C831&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-porshnya-kshm» data-attachment-id=»9721″>
    Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

    » data-image-description=»» data-image-title=»устройство поршня КШМ» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,831″ data-orig-file=»https://i0.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/устройство-поршня-КШМ.jpg?fit=800%2C831&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-porshnya-kshm» data-attachment-id=»9721″>
    Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

  2. Шатун. Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом. устройство шатуна кшм схемаУстройство шатуна

    » data-image-description=»» data-image-title=»устройство шатуна кшм» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,596″ data-orig-file=»https://i0.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/устройство-шатуна-кшм.jpg?fit=800%2C596&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-shatuna-kshm» data-attachment-id=»9722″>
    Устройство шатуна

    » data-image-description=»» data-image-title=»устройство шатуна кшм» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,596″ data-orig-file=»https://i0.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/устройство-шатуна-кшм.jpg?fit=800%2C596&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-shatuna-kshm» data-attachment-id=»9722″>
    Устройство шатуна

  3. Коленвал. Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах. коленвал кшм схемаУстройство коленвала

    » data-image-description=»» data-image-title=»коленвал кшм» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,503″ data-orig-file=»https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/коленвал-кшм.jpg?fit=800%2C503&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/kolenval-kshm» data-attachment-id=»9718″ aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?1506801438?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?1?}?=»»>
    Устройство коленвала

    » data-image-description=»» data-image-title=»коленвал кшм» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,503″ data-orig-file=»https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/коленвал-кшм.jpg?fit=800%2C503&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/kolenval-kshm» data-attachment-id=»9718″ aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?1506801438?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?1?}?=»»>
    Устройство коленвала

  4. Маховик. Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.

устройство маховика кшм фотоУстройство маховика

» data-image-description=»» data-image-title=»устройство маховика кшм» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,450″ data-orig-file=»https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/устройство-маховика-кшм.jpg?fit=800%2C450&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-maxovika-kshm» data-attachment-id=»9720″>
Устройство маховика

» data-image-description=»» data-image-title=»устройство маховика кшм» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,450″ data-orig-file=»https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/устройство-маховика-кшм.jpg?fit=800%2C450&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/ustrojstvo-maxovika-kshm» data-attachment-id=»9720″>
Устройство маховика

Неподвижная группа КШМ

Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

  1. Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя. блок цилиндров фотоБлок цилиндров

    » data-image-description=»» data-image-title=»блок цилиндров» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,597″ data-orig-file=»https://i1.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/блок-цилиндров.jpg?fit=800%2C597&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/blok-cilindrov» data-attachment-id=»9716″>
    Блок цилиндров

    » data-image-description=»» data-image-title=»блок цилиндров» aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,597″ data-orig-file=»https://i1.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/блок-цилиндров.jpg?fit=800%2C597&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/blok-cilindrov» data-attachment-id=»9716″>
    Блок цилиндров

  2. Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.

головка блока цилиндров устройствоУстройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка ГБЦ; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

» data-image-description=»» data-image-title=»головка блока цилиндров 2″ aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,830″ data-orig-file=»https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/головка-блока-цилиндров-2.jpg?fit=800%2C830&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/golovka-bloka-cilindrov-2″ data-attachment-id=»9717″>
Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка ГБЦ; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

» data-image-description=»» data-image-title=»головка блока цилиндров 2″ aperture?:?0?,?credit?:??,?camera?:??,?caption?:??,?created_timestamp?:?0?,?copyright?:??,?focal_length?:?0?,?iso?:?0?,?shutter_speed?:?0?,?title?:??,?orientation?:?0?}?=»» data-image-meta=»{» data-comments-opened=»1″ data-orig-size=»800,830″ data-orig-file=»https://i2.wp.com/vaznetaz.ru/wp-content/uploads/2019/08/головка-блока-цилиндров-2.jpg?fit=800%2C830&ssl=1″ data-permalink=»https://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm/attachment/golovka-bloka-cilindrov-2″ data-attachment-id=»9717″>
Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка клапанная; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

Способы диагностики КШМ

Вышеуказанные методики выявления причин не являются высокоточными. Служат поводом для поездки на СТО, где может быть произведено квалифицированное диагностирование кривошипно комбинированного механизма мастерами, обладающими необходимым опытом и практикой работ. Они имеют чертеж кинематики с точными размерами, допусками и посадками. Обладают необходимым для этого оборудованием.

Предварительная на определение стуков

Поскольку ремонт кривошипно шатунного механизма относится к дорогостоящим операциям капремонта двигателя, на начальном этапе мастер СТО позиционирует стуки и шумы внутри блока цилиндров. Для этого используется стетоскоп (обычно модификация КИ-1154 производителя Экранас). Технология исследований выглядит следующим образом:

  • рабочая поверхность стетоскопа прислоняется к стенкам БЦ на разных уровнях (в рабочей зоне подшипников шатунных и кривошипных);
  • двигатель прогревается до температуры ОЖ 75 – 80 градусов;
  • обороты увеличиваются вначале плавно, затем режим работ изменяется резко;
  • стуки прослушиваются лишь при возникновении зазора больше 0,1 – 0,2 мм.

Характер стука заметен исключительно профессионалу:

  • поршни о цилиндр издают звуки щелкающие, на холодном двигателе;
  • звонкий звук металл о металл при резком увеличении оборотов издает поршневой палец, реже при неправильно выставленном (опережение) угле зажигания;
  • коренные подшипники звучат в низкой тональности;
  • звук подшипников шатунных немного резче.

Внимание: Данная методика диагностики так же не является окончательной. Позволяет мастеру выявить наличие имеющихся дефектов с гарантией, что разбирать ДВС все же необходимо для замены расходных элементов.

Измерение суммарных зазоров в сопряжениях

Обычно техническое обслуживание кривошипно шатунного механизма осуществляется с помощью установки КИ-11140 для определения зазора в КШМ.

При этом не нужно снимать поддон картера и запускать мотор. Измеряются зазоры в головках шатуна суммарно:

  • поршень диагностируемого цилиндра позиционируется в верхней «мертвой точке»;
  • коленвал стопорится, устройство фиксируется на месте форсунки;
  • шток упирается с натягом в дно поршня, зажимается винтом;
  • установка компрессора подсоединяется к штуцеру, создается вакуум -0,06 МПа и давление такой же величины;
  • после 2 – 3 циклов подачи указанного давления и вакуума стабилизируются показания индикатора;
  • затем индикатор настраивается на отметку «0» в надпоршневом пространстве при давлении;
  • после чего, в него подается отрицательное давление.

Суммарные зазоры измеряют минимум три раза, выводят среднее значение, сравнивают с допустимой нормой эксплуатации из таблиц.

Определение объема газа, прорывающегося в картер

Не пригодна к эксплуатации существующая сборка кривошипно шатунного механизма авто, если проверка прорывающихся газов выявила большее его количество в картере. Измерения производятся прибором КИ-4887-И следующим способом:

  • газорасходомер подключается в полость картера и к глушителю или вакуумной установке;
  • двигатель включается в режим «под нагрузкой»;
  • прорывающиеся газы изменяют показания прибора на величину их объема, проходящего в единицу времени.

При значительном износе ДВС расход может превышать 120 л/мин, требуются дополнительные регулировки расходомера. После отсоединения системы вентилирования картера все дополнительные отверстия необходимо закрыть заглушками/пробками.

Схема подключения газового расходомера КИ-4887-11

Измерение давления масла

Эксплуатируемая сборка кривошипно шатунного механизма считается пригодной к использованию, если проверка давления масла удовлетворяет норме. Измерения проводятся прибором КИ-5472, состоящим из рукава и манометра:

  • штатный манометр скручивается с маслофильтра;
  • на его место крепится прибор;
  • двигатель прогревается до 70 – 80 градусов;
  • фиксируется значение магистрального давления при оборотах холостого хода.

Предельно простое общее устройство системы смазки и прибора КИ позволяет снизить время диагностики.

Для ДВС карбюраторного типа считается нормальной компрессия в пределах 0,7 МПа. Поэтому в некоторых случаях диагност СТО измеряет компрессию прогретого двигателя. При этом разница показаний цилиндров не может превышать 0,1 МПа.

Остов двигателя

Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.

Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.

Шатун

Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.

Рис. Детали шатунной группы: 1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла

Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.

Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.

В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.

Маховик

Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.

Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем

Принцип работы КШМ

Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

Принцип работы КШМ:

  1. В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
  2. Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
  3. Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
  4. Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
  5. Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.

Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

Принцип действия и назначение

В отличие от электродвигателя принцип действия КШМ в двигателях внутреннего сгорания значительно сложнее:

  • поршни поочередно выталкиваются из цилиндров при воспламенении топливной смеси;
  • внутри них шарнирно закреплены шатунные детали сложной конфигурации;
  • коленчатый вал имеет ответную посадочную поверхность П-образного типа для нижней головки шатуна, что обеспечивает смещение от оси вращения вала;
  • за счет фиксированного расстояния между поршнем и коленвалом шатун описывает амплитуду в виде восьмерки, за счет чего и преобразуется поступательное движение с цилиндров в крутящий момент на валу.

Основное назначение расходных элементов КШМ (вкладыши, втулки, кольца) заключается в увеличении эксплуатационного ресурса этого узла. Поскольку число цилиндров достигает 16 штук в современных авто, устройство и работа механизма КШ должна быть идеально сбалансирована.

Поршневые кольца

Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

Кольца выполняют следующие функции:

  • Уплотняют зазор между гильзой и стенками поршня.
  • Обеспечивают направление движения поршня.
  • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
  • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

Смазывать необходимо и соединение поршня с шатуном.

Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

Особенности работы двигателя. Такты

циклы работы двигателя внутреннего сгорания

Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

Поршень

Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.

Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.

Конструкции поршней с различной формой днища и их элементов

Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла

Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).

При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.

Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.

Коленчатый вал

Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.

Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.

Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.

Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.

В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.

Как устроен кривошипно-шатунный механизм

Механизм состоит из деталей, как подвижных, так и неподвижных.

Детали подвижного типа:

  • поршень;
  • маслосъемное кольцо (1);
  • компрессионные кольца (2);
  • поршневой палец (3);
  • стопорное кольцо (4);
  • шатун;
  • крышка шатуна (5);
  • крепежный болт (6);
  • вкладыши (7);
  • втулка (8);
  • коленчатый вал;
  • шатунная шейка (9);
  • противовес (10);
  • коренная шейка (11);
  • маховик

Детали неподвижного типа:

  • блок и головка цилиндров;

Подвижные и неподвижные части КШМ

Составные части КШМ условно делят на подвижные и неподвижные компоненты. К подвижным частям относятся:

  • поршни и поршневые кольца;
  • шатуны;
  • поршневые пальцы;
  • коленчатый вал;
  • маховик.

Неподвижные части КШМ выполняют функцию основы, крепежей и направляющих. К ним относятся:

  • блок цилиндров;
  • головка блока цилиндров;
  • картер;
  • поддон картера;
  • крепежные детали и подшипники.

Картер и поддон картера двигателя

Картер – это нижняя часть двигателя, где располагаются опоры и каналы смазочной системы для коленчатого вала. В картере происходит движение шатунов и вращение коленвала. Поддон картера представляет собой резервуар с моторным маслом.

Основа картера в работе подвергается постоянным тепловым и силовым нагрузкам. Поэтому для этой детали предъявляются особые требования по прочности и жесткости. Для его изготовления используют алюминиевые сплавы или чугун.

фото 2
Неподвижные части КШМ

Картер двигателя крепится к блоку цилиндров. Вместе они составляют остов двигателя, основную часть его корпуса. В блоке располагаются непосредственно сами цилиндры. Сверху крепится головка блока ДВС. Вокруг цилиндров имеются полости для жидкостного охлаждения.

Расположение и число цилиндров

На сегодняшний день существуют следующие наиболее популярные схемы:

  • рядное четырех- или шестицилиндровое положение;
  • V-образное шестицилиндровое положение под углом 90°;
  • VR-образное положение под меньшим углом;
  • оппозитное положение (поршни двигаются навстречу друг другу с разных сторон);
  • W-образное положение с 12 цилиндрами.

В простом рядном расположении цилиндры и поршни расположены в ряд перпендикулярно коленчатому валу. Такая схема наиболее простая и надежная.

Головка блока цилиндров

К блоку с помощью шпилек или болтов крепится головка блока цилиндров. Она накрывает цилиндры с поршнями сверху, образуя герметичную полость – камеру сгорания. Между блоком и головкой предусмотрена прокладка. Также в ГБЦ располагаются клапанный механизм и свечи зажигания.

Цилиндры

В цилиндрах двигателя непосредственно происходит движение поршней. От хода поршня и его длины зависит их размер. Цилиндры работают в условиях меняющегося давления и высоких температур. Во время работы стенки подвергаются непрерывному трению и температурам до 2500°C. К материалам и обработке цилиндров также предъявляются особые требования. Они изготавливаются из легированного чугуна, стали или алюминиевых сплавов. Поверхность деталей должна быть не только прочной, но и легко подвергаться обработке.

Внешнюю рабочую поверхность называют зеркалом. Ее покрывают хромом и полируют до зеркальной поверхности, чтобы максимально снизить трение в условиях ограниченной смазки. Цилиндры отливаются вместе с блоком (цельные) или изготавливаются в виде съемных гильз.

Основные неисправности

Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

Стук в двигателе

Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

Снижение мощности

Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

Повышенный расход масла

Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

Нагар

Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

Состав и устройство узлов КШМ

КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ

1. Назначение КШМ и принцип работы.

2. Состав и устройство узлов КШМ.

Назначение КШМ и принцип работы.

Определение: механическая передача передающая энергию с преобразовани­ем видов движения.

В соответствие с общей классификацией машин и механизмов – кривошипно-ползунковый механизм (КПМ).

Назначение: КШМ служит для преобразования поступательного движения поршня под действием энергии расширения продуктов сгорания топлива во вра­щательное движение коленчатого вала.

Принцип действия: четырехтактный поршневой двигатель состоит из ци­линдра и картера, который снизу закрыт поддоном. Внутри цилиндра перемеща­ется поршень с уплотнительными (компрессионными) кольцами. Поршень через поршневой палец и шатун связан с коленчатым валом, который вращается в ко­ренных подшипниках, расположенных в картере. Сверху цилиндр накрыт голов­кой с клапанами, открытие и закрытие которых строго согласовано с вращением коленчатого вала. Перемещение поршня ограничивается двумя крайними поло­жениями, при которых его скорость равна нулю: верхней и нижней мертвой точ­кой. Безостановочное движение поршня через мертвые точки обеспечивается ма­ховиком, имеющим форму диска с массивным ободом.

Состав и устройство узлов КШМ.

Состав: все детали КШМ делятся на подвижные (рис.1) и неподвижные (рис. 2). К неподвижным (детали остова двигателя )относятся: картер, блок цилиндров, головка блока цилиндров и соединяющие их детали (рис. 2, 3), к подвижным – поршень с пальцем и кольцами, шатун, коленчатый вал и маховик.

Блок цилиндров является основой двигателя. Большая часть навесного обо­рудования двигателя монтируется на блоке цилиндров.

Читайте также:  Что такое воздушный фильтр нулевого сопротивления

По форме блока цилинд­ров ДВС классифицируют:

– рядный двигатель: цилиндры располагаются последовательно в одной плос­кости; ось цилиндров вертикальна, под углом или горизонтальна ; число цилинд­ров – 2, 3, 4, 5, 6, 8;

– V-образный двигатель: цилиндры располагаются в двух плоскостях с обра­зованием конструкции V – образной формы; угол развала – от 30° до 90°; число цилиндров 2, 4, 5, 6, 8, 10, 12, 24;

– VR-образный двигатель: рядно-смещенное расположение цилиндров в шахматном порядке с углом развала 15°. Очень узкие V-образные двигатели тако­го типа долгое время делала итальянская фирма “Lancia”, и ее опыт используется концерном “Volkswagen”;

– W-образный двигатель: два рядно-смещенных блока VR, объединенных в V-образную конфигурацию с углом развала 72 °С. W8-Volkswagen Passat, W12- VW Phaeton и Audi A8, W16-Bugatti EB 16.4 Veyron;

– оппозитный двигатель: противолежащие друг другу цилиндры располага­ются горизонтально, число цилиндров – 2,4,6. Subaru обозначает свои оппозитные двигатели индексом “B” (Boxer), добавляя к нему цифру “4” или “6”, в зависимо­сти от числа цилиндров.

Нумерация цилиндров начинается от носка коленвала, а при двух-, и четы­рехрядном расположении цилиндров – слева, если смотреть со стороны носка ко­ленвала ( за исключением «РЕНО»). Направление вращения коленвала – правое, то есть по часовой стрелке, если смотреть с носка коленвала (за исключением Honda, Mitsubishi).

В конструкцию блока входят гильзы цилиндров, рубашка охлаждения и гер­метизированные масляные полости и каналы. Во внутренних полостях блока цир­кулирует жидкость системы охлаждения, там же проходят и масляные каналы системы смазки двигателя. Блок имеет монтажные и опорные поверхности для ус­тановки вспомогательных устройств.

Картер служит опорой для подшипников, на которых вращается коленчатый вал. Обычно выполняется заодно с блоком цилиндров. Такая конструкция называ­ется блок-картер. Снизу картер закрывается поддоном, в котором обычно хранит­ся запас масла.

Чаще картер и блок цилиндров отливают как одно целое. Если картер изготовляют отдельно, то к нему крепят или отдельные цилиндры, или блок цилиндров. Блок-картер совре­менного поршневого двигателя — это наиболее сложная и дорогая деталь. Он обладает большой жесткостью. В зависимости от вос­приятия нагрузки различают силовые схемы с несущими цилиндрами, с несущим блоком цилиндров, с несущими силовыми шпильками.

В первой схеме под действием сил давления газов стенки цилиндров и рубашки охлаждения испытывают напряжение разрыва. Во второй схеме, получившей наибольшее распространение, нагрузки восприни­маются стенками цилиндров и рубашки охлаждения, поперечными пе­регородками картера. В этой схеме часто используют сменные гиль­зы «мокрые» или «сухие» (рис. 3).

Рис. 1. Подвижные детали КШМ

Источники

  • https://VazNeTaz.ru/krivoshipno-shatunnyj-mexanizm-kshm
  • https://seite1.ru/zapchasti/naznachenie-krivoshipno-shatunnogo-mexanizma/.html
  • https://intehstroy-spb.ru/osnastka/chto-takoe-krivoshipno-shatunnyy-mehanizm-i-kak-on-rabotaet.html
  • https://SwapMotor.ru/ustrojstvo-dvigatelya/krivoshipno-shatunnyj-mehanizm-kshm.html
  • https://safari-in-africa.ru/obuchenie/detali-kshm.html
  • https://moto13.ru/obuchenie/krivoshatunnyj-mehanizm.html
  • https://ustroistvo-avtomobilya.ru/dvigatel/krivoshipno-shatunnyj-mehanizm/krivoshipno-shhatunnyj-mehanizm/
  • https://asx-club.su/engine/krivosipno-satunnyj-mehanizm-dvigatela.html
  • https://avtomotoprof.ru/obsluzhivanie-i-uhod-za-avtomobilem/krivoshipno-shatunnyiy-mehanizm/
  • https://TechAutoPort.ru/dvigatel/mehanicheskaya-chast/krivoshipno-shatunnyi-mehanizm.html

Мы в контакте: Задай вопрос - получи ответ!
Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Adblock
detector